55 research outputs found

    Computing exponentially faster: Implementing a nondeterministic universal Turing machine using DNA

    Full text link
    The theory of computer science is based around Universal Turing Machines (UTMs): abstract machines able to execute all possible algorithms. Modern digital computers are physical embodiments of UTMs. The nondeterministic polynomial (NP) time complexity class of problems is the most significant in computer science, and an efficient (i.e. polynomial P) way to solve such problems would be of profound economic and social importance. By definition nondeterministic UTMs (NUTMs) solve NP complete problems in P time. However, NUTMs have previously been believed to be physically impossible to construct. Thue string rewriting systems are computationally equivalent to UTMs, and are naturally nondeterministic. Here we describe the physical design for a NUTM that implements a universal Thue system. The design exploits the ability of DNA to replicate to execute an exponential number of computational paths in P time. Each Thue rewriting step is embodied in a DNA edit implemented using a novel combination of polymerase chain reactions and site-directed mutagenesis. We demonstrate that this design works using both computational modelling and in vitro molecular biology experimentation. The current design has limitations, such as restricted error-correction. However, it opens up the prospect of engineering NUTM based computers able to outperform all standard computers on important practical problems

    The Epstein-Barr Virus G-Protein-Coupled Receptor Contributes to Immune Evasion by Targeting MHC Class I Molecules for Degradation

    Get PDF
    Epstein-Barr virus (EBV) is a human herpesvirus that persists as a largely subclinical infection in the vast majority of adults worldwide. Recent evidence indicates that an important component of the persistence strategy involves active interference with the MHC class I antigen processing pathway during the lytic replication cycle. We have now identified a novel role for the lytic cycle gene, BILF1, which encodes a glycoprotein with the properties of a constitutive signaling G-protein-coupled receptor (GPCR). BILF1 reduced the levels of MHC class I at the cell surface and inhibited CD8+ T cell recognition of endogenous target antigens. The underlying mechanism involves physical association of BILF1 with MHC class I molecules, an increased turnover from the cell surface, and enhanced degradation via lysosomal proteases. The BILF1 protein of the closely related CeHV15 c1-herpesvirus of the Rhesus Old World primate (80% amino acid sequence identity) downregulated surface MHC class I similarly to EBV BILF1. Amongst the human herpesviruses, the GPCR encoded by the ORF74 of the KSHV c2-herpesvirus is most closely related to EBV BILF1 (15% amino acid sequence identity) but did not affect levels of surface MHC class I. An engineered mutant of BILF1 that was unable to activate G protein signaling pathways retained the ability to downregulate MHC class I, indicating that the immune-modulating and GPCR-signaling properties are two distinct functions of BILF1. These findings extend our understanding of the normal biology of an important human pathogen. The discovery of a third EBV lytic cycle gene that cooperates to interfere with MHC class I antigen processing underscores the importance of the need for EBV to be able to evade CD8+ T cell responses during the lytic replication cycle, at a time when such a large number of potential viral targets are expressed

    A survey of microRNA single nucleotide polymorphisms identifies novel breast cancer susceptibility loci in a case-control, population-based study of African-American women

    Get PDF
    Abstract Background MicroRNAs (miRNAs) regulate gene expression and influence cancer. Primary transcripts of miRNAs (pri-miRNAs) are poorly annotated and little is known about the role of germline variation in miRNA genes and breast cancer (BC). We sought to identify germline miRNA variants associated with BC risk and tumor subtype among African-American (AA) women. Methods Under the African American Breast Cancer Epidemiology and Risk (AMBER) Consortium, genotyping and imputed data from four studies on BC in AA women were combined into a final dataset containing 224,188 miRNA gene single nucleotide polymorphisms (SNPs) for 8350 women: 3663 cases and 4687 controls. The primary miRNA sequence was identified for 566 miRNA genes expressed in Encyclopedia of DNA Elements (ENCODE) Tier 1 cell types and human pancreatic islets. Association analysis was conducted using logistic regression for BC status overall and by tumor subtype. Results A novel BC signal was localized to an 8.6-kb region of 17q25.3 by four SNPs (rs9913477, rs1428882938, rs28585511, and rs7502931) and remained statistically significant after multiple test correction (odds ratio (OR) = 1.44, 95% confidence interval (CI) = 1.26–1.65; p = 3.15 × 10−7; false discovery rate (FDR) = 0.03). These SNPs reside in a genomic location that includes both the predicted primary transcript of the noncoding miRNA gene MIR3065 and the first intron of the gene for brain-specific angiogenesis inhibitor 1-associated protein 2 (BAIAP2). Furthermore, miRNA-associated SNPs on chromosomes 1p32.3, 5q32, and 3p25.1 were the strongest signals for hormone receptor, luminal versus basal-like, and HER2 enrichment status, respectively. A second phase of genotyping (1397 BC cases, 2418 controls) that included two SNPs in the 8.6-kb region was used for validation and meta-analysis. While neither rs4969239 nor rs9913477 was validated, when meta-analyzed with the original dataset their association with BC remained directionally consistent (OR = 1.29, 95% CI = 1.16–1.44 (p = 4.18 × 10–6) and OR = 1.33, 95% CI = 1.17–1.51 (p = 1.6 × 10–5), respectively). Conclusion Germline genetic variation indicates that MIR3065 may play an important role in BC development and heterogeneity among AA women. Further investigation to determine the potential functional effects of these SNPs is warranted. This study contributes to our understanding of BC risk in AA women and highlights the complexity in evaluating variation in gene-dense regions of the human genome.https://deepblue.lib.umich.edu/bitstream/2027.42/144216/1/13058_2018_Article_964.pd

    A survey of microRNA single nucleotide polymorphisms identifies novel breast cancer susceptibility loci in a case-control, population-based study of African-American women

    Get PDF
    Abstract Background MicroRNAs (miRNAs) regulate gene expression and influence cancer. Primary transcripts of miRNAs (pri-miRNAs) are poorly annotated and little is known about the role of germline variation in miRNA genes and breast cancer (BC). We sought to identify germline miRNA variants associated with BC risk and tumor subtype among African-American (AA) women. Methods Under the African American Breast Cancer Epidemiology and Risk (AMBER) Consortium, genotyping and imputed data from four studies on BC in AA women were combined into a final dataset containing 224,188 miRNA gene single nucleotide polymorphisms (SNPs) for 8350 women: 3663 cases and 4687 controls. The primary miRNA sequence was identified for 566 miRNA genes expressed in Encyclopedia of DNA Elements (ENCODE) Tier 1 cell types and human pancreatic islets. Association analysis was conducted using logistic regression for BC status overall and by tumor subtype. Results A novel BC signal was localized to an 8.6-kb region of 17q25.3 by four SNPs (rs9913477, rs1428882938, rs28585511, and rs7502931) and remained statistically significant after multiple test correction (odds ratio (OR) = 1.44, 95% confidence interval (CI) = 1.26–1.65; p = 3.15 × 10−7; false discovery rate (FDR) = 0.03). These SNPs reside in a genomic location that includes both the predicted primary transcript of the noncoding miRNA gene MIR3065 and the first intron of the gene for brain-specific angiogenesis inhibitor 1-associated protein 2 (BAIAP2). Furthermore, miRNA-associated SNPs on chromosomes 1p32.3, 5q32, and 3p25.1 were the strongest signals for hormone receptor, luminal versus basal-like, and HER2 enrichment status, respectively. A second phase of genotyping (1397 BC cases, 2418 controls) that included two SNPs in the 8.6-kb region was used for validation and meta-analysis. While neither rs4969239 nor rs9913477 was validated, when meta-analyzed with the original dataset their association with BC remained directionally consistent (OR = 1.29, 95% CI = 1.16–1.44 (p = 4.18 × 10–6) and OR = 1.33, 95% CI = 1.17–1.51 (p = 1.6 × 10–5), respectively). Conclusion Germline genetic variation indicates that MIR3065 may play an important role in BC development and heterogeneity among AA women. Further investigation to determine the potential functional effects of these SNPs is warranted. This study contributes to our understanding of BC risk in AA women and highlights the complexity in evaluating variation in gene-dense regions of the human genome

    GeneGenie: optimized oligomer design for directed evolution

    No full text
    GeneGenie, a new online tool available at http://www.gene-genie.org, is introduced to support the design and self-assembly of synthetic genes and constructs. GeneGenie allows for the design of oligonucleotide cohorts encoding the gene sequence optimized for expression in any suitable host through an intuitive, easy-to-use web interface. The tool ensures consistent oligomer overlapping melting temperatures, minimizes the likelihood of misannealing, optimizes codon usage for expression in a selected host, allows for specification of forward and reverse cloning sequences (for downstream ligation) and also provides support for mutagenesis or directed evolution studies. Directed evolution studies are enabled through the construction of variant libraries via the optional specification of ‘variant codons’, containing mixtures of bases, at any position. For example, specifying the variant codon TNT (where N is any nucleotide) will generate an equimolar mixture of the codons TAT, TCT, TGT and TTT at that position, encoding a mixture of the amino acids Tyr, Ser, Cys and Phe. This facility is demonstrated through the use of GeneGenie to develop and synthesize a library of enhanced green fluorescent protein variants
    • …
    corecore